Skylar is LowbieH's best friend, so every day LowbieH gives Skylar a gift. There are totally \(n\) days. LowbieH will give Skylar a gift of value \(v_i\) on day \(i\) (\(i = 1, 2, \dots, n\)).
On odd days (\(i \mod 2 = 1\)), Skylar will celebrate, inspect the gifts, and wonder the median of values of all gifts received. Can you help her to solve it?
Formally, for \(k = 1, 3, \dots, 2 \lfloor \frac {n+1}{2} \rfloor - 1\), please print out the median of \(v_1, v_2, \dots, v_k\).