Problem F: M-th Smallest Element

Problem F: M-th Smallest Element

Time Limit: 2 Sec  Memory Limit: 128 MB
Submit: 1928  Solved: 249
[Submit][Status][Web Board]

Description

Given a \(N × N\) matrix A, whose element in the \(i\)-th row and \(j\)-th column \(A[i][j]\) is a number that equals \(i^2 + 12345 × i + j^2 - 12345 × j + i × j\).

Please find the M-th smallest element in the matrix.

Input

The 1st line is a positive integer T(1⩽ T ⩽ 10) which is the number of test case.

Then \(T\) lines follow. Each line has two integers N(1⩽ N ⩽ 50000) and M(1⩽ M ⩽ N×N) for a test case.

Output

Output \(T\) lines. Each line has an integer \(ans\), the \(M\)-th smallest element in the matrix.

Sample Input

2
1 1
2 1

Sample Output

3
-12338

HINT


The correspond solutions to the sample is :



(1) \(A[1][1] = 1^2 + 12345 × 1 + 1^2 - 12345 × 1 + 1 × 1 = 3\)



(2) \(A[1][2] =  1^2 + 12345 × 1 + 2^2 - 12345 × 2 + 1 × 2 = -12338\)

    \(A[2][1] =  2^2 + 12345 × 2 + 1^2 - 12345 × 1 + 2 × 1= 12352\)

    \(A[2][2] =  2^2 + 12345 × 2 + 2^2 - 12345 × 2 + 2 × 2= 12\)

    So the smallest element is -12338

[Submit][Status]