Problem D: Swapping

Problem D: Swapping

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 1738  Solved: 266
[Submit][Status][Web Board]

Description

There are \(n\) integers  \(a_1, a_2, …, a_n\)  in an array \(A\). It's guaranteed that any two digits in \(a_i\) won't be the same. Suppose you can swap two digits of \(a_i\) in the array at most \(m\) times. The cost of each swap is \(k\). We define \(S = \sum A – x \times k\), where \(x\) is the times of swapping applied, \(A\) is the corresponding integer array after \(x\) times swapping actions. Please find the maximum value of \(S\).

Input

There will be two lines.

The first line will be three integers: \(n, m, k\).

The second line will be n integers \(a_1, a_2, …, a_n\).

For all test cases, \(1\leq n\leq 2*10^5, 0\leq m\leq 2*10^5, 0\leq k\leq 10^9,  |a_i|\leq 10^9.\)


Output

There will be only one integer: the maximum value of S

Sample Input

3 4 20
154 24 15

Sample Output

556

HINT


1. Leading zero is permitted after swapping.



2. The sample example only takes 3 swaps.

[Submit][Status]